基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对织物缺陷检测时疵点种类繁多且传统人工检测方法漏检率高的问题,提出了一种基于卷积神经网络的织物表面缺陷分类方法.因卷积神经网络(CNN)训练时参数多、样本量大,且极易陷入过拟合,利用微调卷积神经网络模型Alexnet对织物疵点图像进行特征提取,初始化采用原网络的参数而非随机初始化参数;再针对特定目标下的训练样本对网络参数进行微调;最后利用softmax回归算法进行预测分类.分别用三种方法和两种织物进行测试,结果表明:针对特定目标微调后的Alexnet网络,在两类织物测试中均能达到95%以上的分类准确率.
推荐文章
基于卷积神经网络的钣金件表面缺陷分类识别方法
卷积神经网络
缺陷检测
缺陷分割提取
窗口滑移检测
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于卷积神经网络的管道表面缺陷识别研究
缺陷识别
管道表面缺陷
机器视觉
卷积神经网络
缺陷分类
GoogleNet构造优化
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的织物表面缺陷分类方法
来源期刊 测控技术 学科 工学
关键词 卷积神经网络 织物缺陷分类 Alexnet 迁移学习
年,卷(期) 2018,(9) 所属期刊栏目 先进算法与人工智能
研究方向 页码范围 20-25
页数 6页 分类号 TP391
字数 3443字 语种 中文
DOI 10.19708/j.ckjs.2018.09.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 景军锋 西安工程大学电子信息学院 143 578 12.0 16.0
2 刘娆 西安工程大学电子信息学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (55)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (51)
二级引证文献  (6)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(7)
  • 引证文献(3)
  • 二级引证文献(4)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
卷积神经网络
织物缺陷分类
Alexnet
迁移学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
论文1v1指导