基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有推荐系统的研究多数基于单一数据源、单一推荐算法或简单加性融合,忽略了数据源及算法动态融合的重要性,导致推荐精确度不高.为解决该问题,提出一种新的动态自适应推荐算法.利用基础数据求出艺术家流行度和时间衰减因子,将其作为推荐数据源,降低由数据源单一导致的推荐误差.通过权重因子集成基于邻域方法和矩阵分解技术构建组合模型.将数据源应用于模型,运用固定步长的权重因子调整2种方法在模型中的占比,根据推荐结果的召回率实现动态自适应调整.在真实数据集上的实验结果表明,与简单加性融合、FSWA算法相比,该算法具有较高的推荐精确度.
推荐文章
基于PB实现多数据源通用数据转换工具
PIPELINE
数据转换
PB
ODBCAPI
OLE自动化
统计推荐模型中的异构数据源资源配置
统计推荐模型
异构数据源
资源配置
凸优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合多数据源的动态自适应推荐算法
来源期刊 计算机工程 学科 工学
关键词 音乐推荐 多数据源 推荐系统 自适应融合 动态调整
年,卷(期) 2018,(9) 所属期刊栏目 先进计算与数据处理
研究方向 页码范围 64-69
页数 6页 分类号 TP391
字数 5662字 语种 中文
DOI 10.19678/j.issn.1000-3428.0048497
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢菁 上海理工大学光电信息与计算机工程学院 22 35 4.0 4.0
2 陈晓霞 上海理工大学光电信息与计算机工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (45)
共引文献  (42)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
音乐推荐
多数据源
推荐系统
自适应融合
动态调整
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导