作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对神经网络方法在涡轮增压发动机性能预测方面存在的缺陷,提出了一种新的基于最小二乘支持向量机的涡轮增压发动机性能智能预测方法.介绍了最小二乘支持向量机的基本算法,分析了涡轮增压发动机的性能指标,选择发动机转速、压缩比、容积效率、平均指示压力和平均制动压力作为预测模型的输入参数,输出功率、输出扭矩和有效燃油消耗率作为预测模型的输出量,进一步建立了基于最小二乘支持向量机的涡轮增压发动机性能预测模型.仿真实例的预测结果表明,所建立的智能涡轮增压发动机性能预测模型是合理有效的.
推荐文章
电子增压器可改善涡轮增压发动机低速性能
电子增压器
喘振
增压压力
低速扭矩
基于稀薄燃烧的CNG发动机涡轮增压控制
涡轮增压
压缩天然气发动机
稀薄燃烧
λ型氧传感器
转矩预估
基于混沌粒子群优化LS-SVM的发动机磨员态监测研究
最小二乘支持向量机
混沌粒子群算法
磨损
状态监控
应用电子增压器对涡轮增压发动机性能改善研究
电子增压器
性能提升
瞬时响应
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LS-SVM的涡轮增压发动机性能预测
来源期刊 测控技术 学科 工学
关键词 涡轮增压 发动机性能 支持向量机 最小二乘支持向量机
年,卷(期) 2018,(5) 所属期刊栏目 先进算法与人工智能
研究方向 页码范围 33-36
页数 4页 分类号 TP393
字数 2710字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 严其艳 广东科技学院机电工程系 57 26 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (52)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
涡轮增压
发动机性能
支持向量机
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导