原文服务方: 计算机测量与控制       
摘要:
软件缺陷预测是典型的类不均衡学习问题,其中有缺陷的样本数量远少于无缺陷的样本数量,但有缺陷的样本通常是预测的重点;现有的软件预测模型大多建立在基于静态度量元的软件缺陷数据集上,重点关注如何平衡类分布,而忽略了数据集中属性特征对软件缺陷的判别能力;当软件缺陷数据集中的属性特征对类目标概念缺乏判别能力时,传统机器学习算法难以构建有效的软件缺陷预测模型,从而无法获得有效的预测性能;为此,提出了一种基于不相似性的软件缺陷预测算法,通过改善软件缺陷数据集中属性的判别能力,进而提升软件缺陷预测性能;实验证明:基于不相似性的软件缺陷预测算法能够有效地改善传统机器学习算法在软件缺陷数据集上的预测性能.
推荐文章
应用非线性加权的集成学习软件缺陷序列预测算法
软件缺陷序列
预测算法
软件缺陷
集成学习
基于改进BP算法的软件缺陷预测模型研究
缺陷预测模型
模拟退火算法
JCUDA技术
BP算法
基于超欧氏距离近邻传播的软件缺陷预测方法
密度
近邻传播
软件缺陷
超欧氏距离
预测
基于网络嵌入和关联相似性的链路预测算法
链路预测
复杂网络
相似性
网络嵌入
关联
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于不相似性的软件缺陷预测算法
来源期刊 计算机测量与控制 学科
关键词 类不均衡学习 软件缺陷预测 原型选择 不相似性转换
年,卷(期) 2018,(3) 所属期刊栏目 设计与应用
研究方向 页码范围 258-262
页数 5页 分类号 TP39
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.03.064
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张雪莹 5 6 2.0 2.0
2 李瑞贤 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (3)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (13)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(5)
  • 参考文献(4)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
类不均衡学习
软件缺陷预测
原型选择
不相似性转换
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导