基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将图像域规则划分与模糊聚类方法结合,提出了一种区域化模糊聚类算法,并将该算法用于合成孔径雷达(Synthetic Aperture Radar,SAR)图像分割,以解决分割过程中像素模糊聚类难以处理SAR图像中存在的大量固有斑点噪声问题.首先,利用规则划分技术将图像域划分成大小相等的规则子块;假设每一子块内像素对聚类的隶属度相同,并以此为基础定义区域模糊聚类目标函数;通过迭代最小化上述目标函数实现SAR图像初步分割;最后,采用中值滤波方法进行后处理操作,以消除规则划分对不同类别之间边界的影响,实现SAR图像精准分割.为了验证提出算法的有效性,用模拟及真实SAR图像实现了算法测试;对算法分割结果进行定性与定量评价.结果表明算法的分割精度较高,可以有效降低SAR图像中斑点噪声对分割结果的影响.
推荐文章
基于模糊聚类的声呐图像多区域分割
模糊聚类
声呐图像
图像分割
基于改进模糊聚类算法的CT图像病变区域分割
改进模糊聚类算法
CT图像
病变区域分割
隶属度矩阵
基于MAR模型的SAR图像的聚类分割
合成孔径雷达图像
多尺度自回归模型
聚类分割
斑点
模糊聚类图像分割后处理
图像分割
后处理
模糊聚类
局部空间信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 区域化模糊聚类SAR图像分割
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 规则划分 SAR图像 中值滤波 图像分割
年,卷(期) 2018,(5) 所属期刊栏目 3S技术与应用
研究方向 页码范围 152-155
页数 4页 分类号 P237
字数 1759字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白雪 辽宁工程技术大学测绘与地理科学学院 12 16 3.0 4.0
2 金杰 辽宁工程技术大学测绘与地理科学学院 3 1 1.0 1.0
3 吴雅男 辽宁工程技术大学测绘与地理科学学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (18)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
规则划分
SAR图像
中值滤波
图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导