基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的无迹卡尔曼滤波(UKF)和粒子滤波(PF)算法估计动力锂离子电池的荷电状态(SOC)时,常会出现电池模型参数不准确或粒子退化等问题导致估计精度差甚至系统发散等现象.为解决粒子匮乏和噪声干扰等问题,提出一种改进的估计算法——无迹粒子滤波算法(UPF)以实现SOC的精确估计.运用无迹卡尔曼算法为每个粒子计算均值和协方差,解决粒子滤波技术中粒子退化的问题.通过锂离子电池充放电实验,对等效模型进行辨识,最后在脉冲充放电和UDDS动态工况下对该算法进行测试验证.实验结果证明,基于二阶RC等效电路模型的UPF算法能显著提高SOC估计的实时性和精确性,其SOC估计精度在2%以内,收敛速度在250 s内.
推荐文章
基于权值选择粒子滤波算法的锂离子电池SOC估计
Thevenin 模型
在线参数辨识
SOC 估计
权值选择粒子滤波算法
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
等效滞回模型在锂离子电池SOC估计中的应用
锂离子电池
荷电状态
滞回模型
容积卡尔曼滤波
基于滞环电压模型的锂离子电池SOC估计
荷电状态(SOC)
滞环电压
储能电站
迭代平滑可变滤波
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于无迹粒子滤波的车载锂离子电池状态估计
来源期刊 电工技术学报 学科 工学
关键词 荷电状态 锂离子电池 无迹卡尔曼滤波 粒子滤波 无迹粒子滤波
年,卷(期) 2018,(17) 所属期刊栏目 电工理论与新技术
研究方向 页码范围 3958-3964
页数 7页 分类号 TM911
字数 3938字 语种 中文
DOI 10.19595/j.cnki.1000-6753.tces.171195
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾春年 武汉理工大学自动化学院 30 135 7.0 9.0
5 谢长君 武汉理工大学自动化学院 39 151 9.0 11.0
9 费亚龙 武汉理工大学自动化学院 3 8 1.0 2.0
10 房伟 武汉理工大学自动化学院 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (57)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(3)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
荷电状态
锂离子电池
无迹卡尔曼滤波
粒子滤波
无迹粒子滤波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工技术学报
半月刊
1000-6753
11-2188/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
6-117
1986
chi
出版文献量(篇)
8330
总下载数(次)
38
总被引数(次)
195555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导