基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电力线通信是智能电网中的一种重要通信方式,电网中噪声干扰复杂,建立电力线通信信道噪声模型对于深入研究智能电网中低压电力线通信性能至关重要.针对低压电力线通信信道噪声特性,分别提出基于最小二乘支持向量机(LS-SVM)模型和小波神经网络模型在电力线信道噪声中的应用.为了验证并比较LS-SVM和小波神经网络模型对时变的低压电力线信道噪声建模的有效性,在室内和室外环境下对低压电力线通信信道的噪声进行测量,基于大量的测量数据,研究两个模型的准确度和效率.结果表明,两个噪声模型能够很好地仿真和适应时变的低压电力线通信信道,LS-SVM模型有更高的精度和更短的仿真时间.此外,提出的两个模型与传统的Markovian-Gaussian模型进行比较,结果表明,两个噪声模型有更高的精度和更低的复杂度,尤其是LS-SVM模型能够代替传统的Markovian-Gaussian模型,更适合用作低压电力线通信信道噪声发生器.该噪声模型的提出对研究在电力线通信系统和无线通信系统中内部和外部电磁源的电磁干扰有重要意义.
推荐文章
最小二乘Littlewood-Paley小波支持向量机
支持向量机
核函数
支持向量核函数
Littlewood-Paley小波
LS-LPWSVM
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于遗传算法和最小二乘支持向量机可靠性分配
可靠性分配
遗传算法
最小二乘支持向量机
逆向思维
三角模糊数
基于多类最小二乘支持向量机的神经元信号识别
最小二乘支持向量机
多类分类
二叉树
脑机接口
神经康复
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机和小波神经网络的 电力线通信信道噪声建模研究
来源期刊 电工技术学报 学科 工学
关键词 最小二乘支持向量机 小波神经网络 低压电力线通信 噪声
年,卷(期) 2018,(16) 所属期刊栏目 电力系统
研究方向 页码范围 3879-3888
页数 10页 分类号 TN913.6
字数 6235字 语种 中文
DOI 10.19595/j.cnki.1000-6753.tces.170961
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢文冰 华北电力大学电气与电子工程学院 31 286 9.0 16.0
2 赵雄文 华北电力大学电气与电子工程学院 27 170 5.0 12.0
3 李梁 华北电力大学电气与电子工程学院 5 1 1.0 1.0
4 张慧 华北电力大学电气与电子工程学院 14 30 3.0 5.0
5 刘军雨 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (184)
参考文献  (25)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(9)
  • 参考文献(4)
  • 二级参考文献(5)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(10)
  • 参考文献(2)
  • 二级参考文献(8)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
小波神经网络
低压电力线通信
噪声
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电工技术学报
半月刊
1000-6753
11-2188/TM
大16开
北京市西城区莲花池东路102号天莲大厦10层
6-117
1986
chi
出版文献量(篇)
8330
总下载数(次)
38
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导