基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Data-driven technique is a powerful and efficient tool for guiding materials design, which could supply as an alterna-tive to trial-and-error experiments. In order to accelerate composition design for low-cost rare-earth permanent magnets, an approach using composition to estimate coercivity (Hcj) and maximum magnetic energy product ((BH)max) via machine learning has been applied to (PrNd–La–Ce)2Fe14B melt-spun magnets. A set of machine learning algorithms are employed to build property prediction models, in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both Hcj and (BH)max, with high accuracies of R2=0.88 and 0.89, respectively. Using the best models, predicted datasets of Hcj or (BH )max in high-dimensional composition space can be constructed. Exploring these virtual datasets could provide efficient guidance for materials design, and facilitate the composition optimization of 2:14:1 structure melt-spun magnets. Combined with magnets' cost performance, the candidate cost-effective magnets with targeted properties can also be accu-rately and rapidly identified. Such data analytics, which involves property prediction and composition design, is of great time-saving and economical significance for the development and application of LaCe-containing melt-spun magnets.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Composition design for (PrNd–La Ce)2Fe14B melt-spun magnets by machine learning technique
来源期刊 中国物理B(英文版) 学科
关键词 permanent magnet materials design machine learning property prediction
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 460-464
页数 5页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/27/4/047501
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
permanent magnet
materials design
machine learning
property prediction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导