原文服务方: 现代电子技术       
摘要:
现有的卷积神经网络方法大多以增大类间距离为学习目标,而忽略类内距离的减小,这对于人脸识别来说,将导致一些非限制条件下(如姿态、光照等)的人脸无法被准确识别,为了解决此问题,提出一种基于融合度量学习算法和深度卷积神经网络的人脸识别方法.首先,提出一种基于多Inception结构的人脸特征提取网络,使用较少参数来提取特征;其次,提出一种联合损失的度量学习方法,将分类损失和中心损失进行加权联合;最后,将深度卷积神经网络和度量学习方法进行融合,在网络训练时,达到增大类间距离同时减小类内距离的学习目标.实验结果表明,该方法能提取出更具区分性的人脸特征,与分类损失方法及融合了其他度量学习方式的方法相比,提升了非限制条件下的人脸识别准确率.
推荐文章
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
一种新的基于模糊RBF神经网络的人脸识别方法
模糊RBF神经网络
L-M算法
模糊神经分类器
人脸识别
一种新型卷积神经网络植物叶片识别方法
DCGAN
数据扩充
图像识别
迁移学习
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于融合深度卷积神经网络与度量学习的人脸识别方法
来源期刊 现代电子技术 学科
关键词 多Inception结构 深度卷积神经网络 度量学习方法 深度人脸识别 特征提取 损失函数融合
年,卷(期) 2018,(9) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 58-61,67
页数 5页 分类号 TN711-34|TP391.41
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2018.09.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡晓东 桂林电子科技大学信息与通信学院 64 228 9.0 12.0
2 吕璐 桂林电子科技大学信息与通信学院 4 24 2.0 4.0
3 梁晓曦 桂林电子科技大学信息与通信学院 7 13 2.0 3.0
4 曾燕 桂林电子科技大学信息与通信学院 4 18 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (5)
同被引文献  (37)
二级引证文献  (3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(5)
  • 二级引证文献(0)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导