基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统遗传神经网络算法易出现的早熟收敛及锯齿等现象,提出一种新型算法应用于土壤墒情预测.该算法提出了衡量种群基因多样性的遗传多样性函数的概念,自适应调节交叉和变异策略,在全局范围内寻找最优初始网络权值和阈值,从而降低算法迭代次数,提高神经网络预测的精度和效率.仿真结果表明,与其他遗传神经网络算法相比较,该算法平均绝对误差从2%降低到1%,平均相对误差从5%降低到3%,最大相对误差从15%降低到8%,即新型算法可有效提高墒情的预测质量.
推荐文章
基于遗传神经网络成绩预测的研究与实现
成绩预测
BP神经网络
遗传算法
Matlab
Java
基于自适应竞争遗传神经网络醋酸乙烯聚合率软测量建模
醋酸乙烯聚合率
自适应遗传算法
BP神经网络
保优竞争
基于自适应遗传算法优化的BP神经网络股票价格预测
股票价格预测模型
自适应遗传算法
BP神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 土壤墒情预测自适应遗传神经网络算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 人工智能算法 土壤墒情预测 自适应 遗传多样性函数 神经网络
年,卷(期) 2018,(1) 所属期刊栏目 理论与研发
研究方向 页码范围 54-59,69
页数 7页 分类号 TP183
字数 4878字 语种 中文
DOI 10.3778/j.issn.1002-8331.1608-0261
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓中亮 北京邮电大学电子工程学院 165 1541 20.0 31.0
2 杨福兴 北京邮电大学自动化学院 36 400 11.0 19.0
3 李宁 北京邮电大学电子工程学院 15 57 5.0 7.0
4 张琪 北京邮电大学自动化学院 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (92)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(5)
  • 参考文献(1)
  • 二级参考文献(4)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(13)
  • 参考文献(1)
  • 二级参考文献(12)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(13)
  • 参考文献(1)
  • 二级参考文献(12)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能算法
土壤墒情预测
自适应
遗传多样性函数
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导