作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文对影响电视剧热度的因素进行了系统的研究.首先通过建立并优化AR(2)、ARMA(2,3)单一模型,预测电视剧后三集的收视率;之后建立ARMA-BP神经网络组合模型,以ARMA(2,3)模型捕捉线性特征,用线性残差训练BP神经网络以捕捉非线性特征.通过在测试集上的计算,证明组合模型的性能优于单一模型.
推荐文章
电视剧收视率预估的市场化操作模式构建探析
电视剧收视率
评价指标
市场化操作模式
系统构建方式
基于RBF神经网络的电视收视率预测
RBF神经网络
收视率
预测
收视率分析预测系统的设计与实现
收视率
数据挖掘
预测
J2EE
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时间序列预测模型的电视剧收视率预测
来源期刊 电子世界 学科
关键词 电视剧收视率 一元线性自回归模型 时间序列 BP神经网络
年,卷(期) 2018,(1) 所属期刊栏目 探索与观察
研究方向 页码范围 39-40
页数 2页 分类号
字数 3889字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆文昊 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (83)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (21)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(4)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电视剧收视率
一元线性自回归模型
时间序列
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子世界
半月刊
1003-0522
11-2086/TN
大16开
北京市
2-892
1979
chi
出版文献量(篇)
36164
总下载数(次)
96
总被引数(次)
46655
论文1v1指导