作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
伴随着计算机网络体系的全面升级和进步,浅层网络和深层网络研究受到了社会各界的广泛关注,一定程度上推动了机器学习的发展进程.从人工神经网络方向传递算法到目前机械深度学习理念,真正实现了学术和工业的同步改革.本文对深度学习原理进行了分析,并集中阐释了基于深度学习的人脸表情识别方法,以供参考.
推荐文章
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
基于深度学习的面部表情识别研究
深度学习
表情识别
神经网络
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人脸表情识别方法研究
来源期刊 电脑迷 学科
关键词 深度学习 人脸表情识别 方法
年,卷(期) 2018,(10) 所属期刊栏目 科学前沿
研究方向 页码范围 194
页数 1页 分类号
字数 1948字 语种 中文
DOI 10.3969/j.issn.1672-528X.2018.10.180
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 原渊 渭南职业技术学院机电工程学院 10 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (39)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
人脸表情识别
方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑迷
旬刊
1672-528X
50-1163/TP
16开
重庆市渝中区双钢路3号科协大厦1202(武汉市洪山区珞狮北路2号樱花大厦A座15楼 430070)
78-230
2003
chi
出版文献量(篇)
29651
总下载数(次)
121
总被引数(次)
8479
论文1v1指导