基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.
推荐文章
The performance of the Noblesse multi-collector noble gas mass spectrometer for 40Ar/39Ar geochronol
Ar/Ar geochronology
Multi-collector
High precision
Noblesse
Age standard
高温气冷堆氦气透平直接循环的Exergy分析
热力学分析
Exergy分析
高温气冷堆
布雷登循环
Exergy损失
Soil organic carbon dynamics study bias deduced from isotopic fractionation in corn plant
Bias of SOC dynamics study
Isotopic fractionation in corn
Isotope mass balance equation
Bias range
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Performance of a 270 MW Gas Power Plant Using Exergy and Heat Rate
来源期刊 能源与动力工程(英文) 学科 医学
关键词 EXERGY Analysis GAS TURBINE Power PLANT Heat Rate Efficiency and PERFORMANCE
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 15-34
页数 20页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
EXERGY
Analysis
GAS
TURBINE
Power
PLANT
Heat
Rate
Efficiency
and
PERFORMANCE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
能源与动力工程(英文)
月刊
1949-243X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
94
总下载数(次)
0
总被引数(次)
0
论文1v1指导