基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Fraud is a major challenge facing telecommunication industry. A huge amount of revenues are lost to these fraudsters who have developed different techniques and strategies to defraud the service providers. For any service provider to remain in the industry, the expected loss from the activities of these fraudsters should be highly minimized if not eliminated completely. But due to the nature of huge data and millions of subscribers involved, it becomes very difficult to detect this group of people. For this purpose, there is a need for optimal classifier and predictive probability model that can capture both the present and past history of the subscribers and classify them accordingly. In this paper, we have developed some predictive models and an optimal classifier. We simulated a sample of eighty (80) subscribers: their number of calls and the duration of the calls and categorized it into four sub-samples with sample size of twenty (20) each. We obtained the prior and posterior probabilities of the groups. We group these posterior probability distributions into two sample multivariate data with two variates each. We develop linear classifier that discriminates between the genuine subscribers and fraudulent subscribers. The optimal classifier (βA+B) has a posterior probability of 0.7368, and we classify the subscribers based on this optimal point. This paper focused on domestic subscribers and the parameters of interest were the number of calls per hour and the duration of the calls.
推荐文章
GRMP协议中Classifier动态加载的实现
ForCES
GRMP
分类器
模块
软中断
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
基于谷歌TensorFlow Object Detection的"智慧"分类垃圾桶设计
垃圾智能分类
谷歌TensorFlow
Object Detection
python
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Optimal Classifier for Fraud Detection in Telecommunication Industry
来源期刊 最优化(英文) 学科 医学
关键词 FRAUD Detection TELECOMMUNICATION OPTIMAL CLASSIFIER Prior PROBABILITY POSTERIOR PROBABILITY
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 15-31
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FRAUD
Detection
TELECOMMUNICATION
OPTIMAL
CLASSIFIER
Prior
PROBABILITY
POSTERIOR
PROBABILITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
最优化(英文)
季刊
2325-7105
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
65
总下载数(次)
0
总被引数(次)
0
论文1v1指导