摘要:
Degrees of freedom in deep learning, quantum cosmological, information processing are shared and evolve through a self-organizing sequence of optimal , non-antipodal , spherical codes, . This Tribonacci Quantum Cosmology model invokes four codes: 1-vertex, 3-vertex (great circle equilateral triangle), 4-vertex (spherical tetrahedron) and 24-vertex (spherical snub cube). The vertices are einselected centres of coherent quantum information that maximise their minimum separation and survive environmental decoherence on a noisy horizon. Twenty-four 1-vertex codes, , self-organize into eight 3-vertex codes, , which self-organize into one 24-vertex code, , isomorphic to dimensions of 24-spacetime and 12(2) generators of SU(5). Snub cubical 24-vertex code chirality causes matter asymmetries and the corresponding graph-stress has normal and shear components relating to respective sides of Einstein’s tensor equivalence . Cosmological scale factor and Hubble parameter evolution is formalized as an Ostwald-coarsening function of time, scaled by the tribonacci constant (T≈1.839) property of the snub cube. The 24-vertex code coarsens to a broadband 4-vertex code, isomorphic to emergent 4-spacetime and antecedent structures in 24-spacetime metamorphose to familiar 4-spacetime forms. Each of the coarse code’s 4-vertices has 6-fold parallelized degrees of freedom (conserved from the 24-vertex code), , so 4-spacetime is properly denoted 4(6)-spacetime. Cosmological parameters are formalized: CMB h=H0/100=Tlog(3)/3≈0.674, Distance Ladder , , and . Due to 6-fold parallelization, the total matter density parameter is 6-fold heavier than the baryon density parameter, . A torrent of information-equivalent energy downloads from 6-fold faster 24-spacetime to 4(6)-spacetime. Consequent stress on 4(6)-spacetime causes it to resize its dynamic memory, expanding its cosmological scale. Ultimate coarsening of reality to , isomorphic to eternal time, is imminent for each observing agent in a Wheelerian participatory universe. DNA perh