基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this study, we regard written texts as time series data and try to investigate dynamic correlations of word occurrences by utilizing an autocorrelation function (ACF). After defining appropriate formula for the ACF that is suitable for expressing the dynamic correlations of words, we use the formula to calculate ACFs for frequent words in 12 books. The ACFs obtained can be classified into two groups: One group of ACFs shows dynamic correlations, with these ACFs well described by a modified Kohlrausch-Williams-Watts (KWW) function;the other group of ACFs shows no correlations, with these ACFs fitted by a simple stepdown function. A word having the former ACF is called a Type-I word and a word with the latter ACF is called a Type-II word. It is also shown that the ACFs of Type-II words can be derived theoretically by assuming that the stochastic process governing word occurrence is a homogeneous Poisson point process. Based on the fitting of the ACFs by KWW and stepdown functions, we propose a measure of word importance which expresses the extent to which a word is important in a particular text. The validity of the measure is confirmed by using the Kleinburg’s burst detection algorithm.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Measuring Dynamic Correlations of Words in Written Texts with an Autocorrelation Function
来源期刊 数据分析和信息处理(英文) 学科 医学
关键词 AUTOCORRELATION FUNCTION Word Occurrence Kohlrausch-Williams-Watts FUNCTION Stochastic PROCESS Poisson Point PROCESS
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 46-73
页数 28页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AUTOCORRELATION
FUNCTION
Word
Occurrence
Kohlrausch-Williams-Watts
FUNCTION
Stochastic
PROCESS
Poisson
Point
PROCESS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导