基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The high precision population forecasting and spatial distribution modeling are very important for the theory and application of population sociology,city planning and Geo-Informatics.However,the two problems need to be solved for providing the high precision population information.One is how to improve the population forecasting precision of small area(e.g.,street scale);another is how to improve the spatial resolution of urban population distribution model.To solve the two problems,some new methods are proposed in this contribution.(1)To improve the precision of small area population forecasting,a new method is developed based on the fade factor and the slide window.(2)To improve the spatial resolution of urban population distribution model,a new method is proposed based on the land classification,public facility information and the artificial intelligence technology.For validation of the proposed methods,the real population data of 15 streets in Xicheng district,Beijing,China from 2010 to 2016,the remote sensing images and the public facility data are collected and used.A number of experiments are performed.The results show that the spatial resolution of proposed model reaches 30m*30m and the forecasting precision is better than 5%using the proposed method to forecast the population of 15 streets in Xicheng district in the next four years.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Using seismic surveys to investigate sediment distribution and to estimate burial fluxes of OC, N, a
Dongfeng Reservoir
Seismic survey
Sedimentation
Nutrients burial fluxes
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Exploring Urban Population Forecasting and Spatial Distribution Modeling with Artificial Intelligence Technology
来源期刊 工程与科学中的计算机建模(英文) 学科 社会科学
关键词 POPULATION forecasting SPATIAL distribution cellular AUTOMATA MULTI-AGENT system
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 295-310
页数 16页 分类号 C92
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
POPULATION
forecasting
SPATIAL
distribution
cellular
AUTOMATA
MULTI-AGENT
system
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程与科学中的计算机建模(英文)
月刊
1526-1492
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
299
总下载数(次)
1
总被引数(次)
0
论文1v1指导