基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Convolutional neural network (CNN), a class of deep neural networks (most commonly used in visual image analysis), has become one of the most influential innovations in the field of computer vision. In our research, we built a system which allows the computer to extract the feature and recognize the image of human lungs and to automatically conclude the health level of the lungs based on database. Here, we built a CNN model to train the datasets. After the training, the system could do certain preliminary analysis already. In addition, we used the fixed coordinate to reduce the noise and combined the Canny algorithm and the Mask algorithm to further improve the accuracy of the system. The final accuracy turned out to be 87.0%, which is convincing. Our system can contribute a lot to the efficiency and accuracy of doctors’ analysis of the patients’ health level. In the future, we will do more improvement to reduce noise and increase accuracy.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
Carbon dioxide emissions from the Three Gorges Reservoir, China
CO2 emissions
Three Gorges Reservoir
River-type reservoir
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Tuberculosis Detection from Computed Tomography with Convolutional Neural Networks
来源期刊 计算机断层扫描(英文) 学科 工学
关键词 Lungs TUBERCULOSIS DETECTION COMPUTED TOMOGRAPHY Convolutional NEURAL Networks
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 47-56
页数 10页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Lungs
TUBERCULOSIS
DETECTION
COMPUTED
TOMOGRAPHY
Convolutional
NEURAL
Networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机断层扫描(英文)
季刊
2169-2475
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
58
总下载数(次)
0
总被引数(次)
0
论文1v1指导