基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Collaborative filtering is the most popular approach when building recommender systems,but the large scale and sparse data of the user-item matrix seriously affect the recommendation results.Recent research shows the user’s social relations information can improve the quality of recommendation.However,most of the current social recommendation algorithms only consider the user's direct social relations,while ignoring potential users’interest preference and group clustering information.Moreover,project attribute is also important in item rating.We propose a recommendation algorithm which using matrix factorization technology to fuse user information and project information together.We first detect the community structure using overlapping community discovery algorithm,and mine the clustering information of user interest preference by a fuzzy clustering algorithm based on the project category information.On the other hand,we use project-category attribution matrix and user-project score matrix to get project comprehensive similarity and compute project feature matrix based on Entity Relation Decomposition.Fusing the user clustering information and project information together,we get Entity-Association-based Matrix Factorization(EAMF)model which can be used to predict user ratings.The proposed algorithm is compared with other algorithms on the Yelp dataset.Experimental studies show that the proposed algorithm leads to a substantial increase in recommendation accuracy on Yelp data set.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
基于.NET Entity Framework数据库访问机制的设计与应用
实体框架
泛型类型
接口
数据库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Entity-Association-Based Matrix Factorization Recommendation Algorithm
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 COLLABORATIVE FILTERING MATRIX FACTORIZATION RECOMMENDER system
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 101-120
页数 20页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COLLABORATIVE
FILTERING
MATRIX
FACTORIZATION
RECOMMENDER
system
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导