基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Wind turbine blades are generally manufactured using fiber type material because of their cost effectiveness and light weight property however,blade get damaged due to wind gusts,bad weather conditions,unpredictable aerodynamic forces,lightning strikes and gravitational loads which causes crack on the surface of wind turbine blade.It is very much essential to identify the damage on blade before it crashes catastrophically which might possibly destroy the complete wind turbine.In this paper,a fifteen tree classification based machine learning algorithms were modelled for identifying and detecting the crack on wind turbine blades.The models are built based on computing the vibration response of the blade when it is excited using piezoelectric accelerometer.The statistical,histogram and ARMA methods for each algorithm were compared essentially to suggest a better model for the identification and localization of crack on wind turbine blade.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Crack Detection and Localization on Wind Turbine Blade Using Machine Learning Algorithms: A Data Mining Approach
来源期刊 结构耐久性与健康监测(英文) 学科 物理学
关键词 Structural health monitoring fault diagnosis BLADE CRACK STATISTICAL features HISTOGRAM ARMA tree ALGORITHMS vibration signals
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 181-203
页数 23页 分类号 O34
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Structural
health
monitoring
fault
diagnosis
BLADE
CRACK
STATISTICAL
features
HISTOGRAM
ARMA
tree
ALGORITHMS
vibration
signals
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
结构耐久性与健康监测(英文)
季刊
1930-2983
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
39
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导