基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Fast and accurate forecasting of schedulable capacity of electric vehicles(EVs)plays an important role in enabling the integration of EVs into future smart grids as distributed energy storage systems.Traditional methods are insufficient to deal with large-scale actual schedulable capacity data.This paper proposes forecasting models for schedulable capacity of EVs through the parallel gradient boosting decision tree algorithm and big data analysis for multi-time scales.The time scale of these data analysis comprises the real time of one minute,ultra-short-term of one hour and one-day-ahead scale of 24 hours.The predicted results for different time scales can be used for various ancillary services.The proposed algorithm is validated using operation data of 521 EVs in the field.The results show that compared with other machine learning methods such as the parallel random forest algorithm and parallel k-nearest neighbor algorithm,the proposed algorithm requires less training time with better forecasting accuracy and analytical processing ability in big data environment.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Schedulable capacity forecasting for electric vehicles based on big data analysis
来源期刊 现代电力系统与清洁能源学报(英文) 学科 交通运输
关键词 Electric vehicle(EV) Schedulable capacity MACHINE LEARNING BIG data Multi-time SCALE
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 1651-1662
页数 12页 分类号 U492.22
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Electric
vehicle(EV)
Schedulable
capacity
MACHINE
LEARNING
BIG
data
Multi-time
SCALE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电力系统与清洁能源学报(英文)
双月刊
2196-5625
32-1884/TK
No. 19 Chengxin Aven
出版文献量(篇)
386
总下载数(次)
0
总被引数(次)
0
论文1v1指导