基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Cardiomyopathy is one of the most serious public health threats.The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning.Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle(LV)manually in routine clinical diagnosis or treatment planning period.This task is time-consuming and error-prone.Therefore,it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance(CMR)imaging datasets.However,due to the low image quality and the deformation caused by heartbeat,there is no effective tool for fully automated end-to-end cardiac segmentation task.In this work,we propose a multi-scale segmentation network(MSSN)for left ventricle segmentation.It can effectively learn myocardium and blood pool structure representations from 2D short-axis CMR image slices in a multi-scale way.Specifically,our method employs both parallel and serial of dilated convolution layers with different dilation rates to capture multi-scale semantic features.Moreover,we design graduated up-sampling layers with subpixel layers as the decoder to reconstruct lost spatial information and produce accurate segmentation masks.We validated our method using 164 T1 Mapping CMR images and showed that it outperforms the advanced convolutional neural network(CNN)models.In validation metrics,we archived the Dice Similarity Coefficient(DSC)metric of 78.96%.
推荐文章
一种基于深度Encoder-Decoder神经网络的智能电网数据服务器流量异常检测算法
智能网
流量异常检测
深度神经网络
正常行为模型
置信区间
控制限
Incorporation of silica into the goethite structure: a microscopic and spectroscopic study
Quartz
Goethite
Twinned goethite
Microscopic characterization (FESEM and TEM)
FT-IR spectroscopy
Viterbi Decoder ACS单元中路径度量值存储空间的优化
卷积码
Viterbi Decoder
ACS单元
路径度量
分支度量
幸存路径
回溯
急性心肌炎的CMR应用进展
心脏
磁共振成像
心肌炎
诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation
来源期刊 信息隐藏与隐私保护杂志(英文) 学科 医学
关键词 Cardiac magnetic resonance imaging MULTI-SCALE SEMANTIC SEGMENTATION convolutional neural networks
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 109-117
页数 9页 分类号 R54
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Cardiac
magnetic
resonance
imaging
MULTI-SCALE
SEMANTIC
SEGMENTATION
convolutional
neural
networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息隐藏与隐私保护杂志(英文)
季刊
2637-4234
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
15
总下载数(次)
2
论文1v1指导