In this study,the texture of a rolled Mg alloy is effectively modified through the application of precompression and subsequent annealing treatment,leading to a remarkable improvement in the bending formability of the alloy at room temperature.Precompression induces lattice reorientation through{10-12}twinning,and annealing treatment reduces the stored strain energy of the precompressed material,which results in the formation of a stable grain structure with two dominant texture components.With an increase in precompression,the tensile strain in the outer region of the bending samples is accommodated to a greater extent due to more pronounced{10-12}twinning and basal slip.As a result,the bending formability of the material at room temperature improves with greater precompression.The variation in microstructure,texture,and bending behavior in relation to the degree of precompression is discussed in detail.