基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The availability and advancements of cloud computing service models such as IaaS, SaaS, and PaaS;introducing on-demand self-service, auto scaling, easy maintenance, and pay as you go, has dramatically transformed the way organizations design and operate their datacenters. However, some organizations still have many concerns like: security, governance, lack of expertise, and migration. The purpose of this paper is to discuss the cloud computing customers’ opinions, feedbacks, attitudes, and emotions towards cloud computing services using sentiment analysis. The associated aim, is to help people and organizations to understand the benefits and challenges of cloud services from the general public’s perspective view as well as opinions about existing cloud providers, focusing on three main cloud providers: Azure, Amazon Web Services (AWS) and Google Cloud. The methodology used in this paper is based on sentiment analysis applied to the tweets that were extracted from social media platform (Twitter) via its search API. We have extracted a sample of 11,000 tweets and each cloud provider has almost similar proportion of the tweets based on relevant hashtags and keywords. Analysis starts by combining the tweets in order to find the overall polarity about cloud computing, then breaking the tweets to find the specific polarity for each cloud provider. Bing and NRC Lexicons are employed to measure the polarity and emotion of the terms in the tweets. The overall polarity classification of the tweets across all cloud providers shows 68.5% positive and 31.5% negative percentages. More specifically, Azure shows 63.8% positive and 36.2% negative tweets, Google Cloud shows 72.6% positive and 27.4% negative tweets and AWS shows 69.1% positive and 30.9% negative tweets.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Tweet Sentiment Analysis (TSA) for Cloud Providers Using Classification Algorithms and Latent Semantic Analysis
来源期刊 数据分析和信息处理(英文) 学科 工学
关键词 AZURE AWS Google CLOUD MACHINE Learning SENTIMENT Analysis Tweets
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 276-294
页数 19页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
AZURE
AWS
Google
CLOUD
MACHINE
Learning
SENTIMENT
Analysis
Tweets
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导