基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Communication is important for providing intelligent services in connected vehicles.Vehicles must be able to communicate with different places and exchange information while driving.For service operation,connected vehicles frequently attempt to download large amounts of data.They can request data downloading to a road side unit(RSU),which provides infrastructure for connected vehicles.The RSU is a data bottleneck in a transportation system because data traffic is concentrated on the RSU.Therefore,it is not appropriate for a connected vehicle to always attempt a high speed download from the RSU.If the mobile network between a connected vehicle and an RSU has poor connection quality,the efficiency and speed of the data download from the RSU is decreased.This problem affects the quality of the user experience.Therefore,it is important for a connected vehicle to connect to an RSU with consideration of the network conditions in order to try to maximize download speed.The proposed method maximizes download speed from an RSU using a machine learning algorithm.To collect and learn from network data,fog computing is used.A fog server is integrated with the RSU to perform computing.If the algorithm recognizes that conditions are not good for mass data download,it will not attempt to download at high speed.Thus,the proposed method can improve the efficiency of high speed downloads.This conclusion was validated using extensive computer simulations.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Data Download Method from RSUs Using Fog Computing in Connected Vehicles
来源期刊 计算机、材料和连续体(英文) 学科 交通运输
关键词 CONNECTED CAR FOG COMPUTING data DOWNLOAD DSRC machine learning
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 375-387
页数 13页 分类号 U49
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CONNECTED
CAR
FOG
COMPUTING
data
DOWNLOAD
DSRC
machine
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导