基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前大部分PM2.5预测模型预测效果不稳定、泛化能力不强的现状,以记忆能力较强的循环神经网络(RNN)和特征表达能力较强的卷积神经网络(CNN)为基础,采取Stacking集成策略对两者进行融合,提出了RNN-CNN集成深度学习预测模型.该模型不仅充分利用时间轴上的前后关联信息去预测未来的浓度,而且在不同层次上将自动提取的高维时序数据通用特征用于预测,以保证预测结果的稳定性.最后,对集成之前的RNN、CNN和集成之后的RNN-CNN模型,以2016年中国大陆地区1466个监测站点的空气质量数据为样本进行实例验证,结果表明,RNN-CNN在PM2.5时间序列预测上的表现明显优于集成之前的RNN和CNN,而且泛化误差更低,在34%站点上的拟合度超过0.97,该模型可用于大范围区域的PM2.5小时浓度预测.
推荐文章
基于LSTM的PM2.5浓度预测模型
PM2.5
LSTM循环神经网络
时序特征
基于BP人工神经网络的鹰潭市PM2.5和PM10浓度预测模型
大气颗粒物
预测模型
BP人工神经网络
气象要素
气体污染物
基于广义隐马尔可夫模型的PM2.5浓度预测
系统工程
环境
污染
PM2.5
预测
算法
广义隐马尔可夫模型
基于深度学习的PM2.5预测模型建立
深度学习
深度置信网络
PM2.5
气溶胶光学厚度
气象参数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RNN-CNN集成深度学习模型的PM 2.5小时浓度预测
来源期刊 浙江大学学报(理学版) 学科 工学
关键词 PM2.5小时浓度预测 RNN CNN 深度学习 集成学习
年,卷(期) 2019,(3) 所属期刊栏目 地球科学
研究方向 页码范围 370-379
页数 10页 分类号 TP391
字数 7108字 语种 中文
DOI 10.3785/j.issn.1008-9497.2019.03.016
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (36)
参考文献  (16)
节点文献
引证文献  (6)
同被引文献  (37)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(5)
  • 引证文献(5)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PM2.5小时浓度预测
RNN
CNN
深度学习
集成学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(理学版)
双月刊
1008-9497
33-1246/N
大16开
杭州市天目山路148号浙江大学
32-36
1956
chi
出版文献量(篇)
3051
总下载数(次)
2
论文1v1指导