原文服务方: 物联网技术       
摘要:
单样本人脸识别的关键在于充分挖掘单样本判别性信息,采用深度稀疏自编码网络与空频域多LBP特征融合进行特征提取.首先利用部分样本训练深度稀疏自编码网络,利用训练好的网络分别提取训练及测试集的特征;其次,利用二维离散小波变换将时域样本变换到频域,实现样本扩展,增加单样本信息并分别提取各域上的多LBP特征;最后利用协同表示对深度自编码网络及多LBP特征进行分类识别,融合识别结果获取最终分类结果.在AR及PIE数据库上的实验结果表明,该融合算法能提高样本判别性信息的提取,提高单样本人脸识别性能.
推荐文章
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于稀疏重构扩充法的单样本人脸识别算法
单样本人脸识别
虚拟图像构建
稀疏重构
噪声图像
一种鲁棒稀疏表示的单样本人脸识别算法
稀疏表示
单样本
人脸识别
位置图像
L2,1范数
基于WSSRC单样本人脸识别及样本扩充方法研究
稀疏表示分类
样本扩展
WSSRC
三层级联
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度稀疏自编码网络融合多LBP特征用于单样本人脸识别
来源期刊 物联网技术 学科
关键词 稀疏自编码 单样本人脸识别 空-频特征 多特征融合 二维离散小波变换 数据库
年,卷(期) 2019,(11) 所属期刊栏目 全面感知
研究方向 页码范围 13-17
页数 5页 分类号 TP181
字数 语种 中文
DOI 10.16667/j.issn.2095-1302.2019.11.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵淑欢 河北大学电子信息工程学院 4 2 1.0 1.0
2 郭昌隆 河北大学电子信息工程学院 4 38 3.0 4.0
3 万品哲 河北大学电子信息工程学院 2 16 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (42)
参考文献  (22)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(10)
  • 参考文献(2)
  • 二级参考文献(8)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏自编码
单样本人脸识别
空-频特征
多特征融合
二维离散小波变换
数据库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网技术
月刊
2095-1302
61-1483/TP
16开
2011-01-01
chi
出版文献量(篇)
5103
总下载数(次)
0
总被引数(次)
13151
论文1v1指导