基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Current pharmaceutical formulation development still strongly relies on the traditional trialand-error methods of pharmaceutical scientists.This approach is laborious,time-consuming and costly.Recently,deep learning has been widely applied in many challenging domains because of its important capability of automatic feature extraction.The aim of the present research is to apply deep learning methods to predict pharmaceutical formulations.In this paper,two types of dosage forms were chosen as model systems.Evaluation criteria suitable for pharmaceutics were applied to assess the performance of the models.Moreover,an automatic dataset selection algorithm was developed for selecting the representative data as validation and test datasets.Six machine learning methods were compared with deep learning.Results showed that the accuracies of both two deep neural networks were above 80% and higher than other machine learning models;the latter showed good prediction of pharmaceutical formulations.In summary,deep learning employing an automatic data splitting algorithm and the evaluation criteria suitable for pharmaceutical formulation data was developed for the prediction of pharmaceutical formulations for the first time.The cross-disciplinary integration of pharmaceutics and artificial intelligence may shift the paradigm of pharmaceutical research from experience-dependent studies to data-driven methodologies.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep learning for in vitro prediction of pharmaceutical formulations
来源期刊 药学学报(英文版) 学科
关键词 Pharmaceutical formulation Deep learning Small data Automatic dataset selection algorithm Oral fast disintegrating films Oral sustained release matrix tablets
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 177-185
页数 9页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (35)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(6)
  • 参考文献(6)
  • 二级参考文献(0)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Pharmaceutical formulation
Deep learning
Small data
Automatic dataset selection algorithm
Oral fast disintegrating films
Oral sustained release matrix tablets
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
药学学报(英文版)
双月刊
2211-3835
10-1171/R
北京市先农坛街1号
eng
出版文献量(篇)
688
总下载数(次)
0
总被引数(次)
1428
论文1v1指导