基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Quickly extraction of building information technology is an important application in urban development planning, electronic information, national defense and others. This paper takes Landsat-8 multispectral and panchromatic data as data source, using the local variance method to select the optimal segmentation scale, normalized difference vegetation index (NDVI) and the normalized building index (NDBI) and panchromatic brightness value of an object oriented classification rule extraction. The high vegetation coverage area of buildings, and through the spatial relationships and distinguishing feature of collections of buildings independent buildings and villages. The results showed that Google earth high resolution image analysis and accuracy evaluation. the results of the extraction based on the overall accuracy of village extraction was 83%, the accuracy of extraction of independent buildings was 70%, according to the L8 remote sensing data, object oriented classification method can quickly and accurately extract the high vegetation coverage area of the building.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
一种基于A-means聚类算法的Sweep Coverage机制
无线传感器网络
覆盖机制
扫描覆盖
移动控制
聚类
K-均值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Building Extraction Based on Object Oriented Classification Method in High Vegetation Coverage Area
来源期刊 电脑和通信(英文) 学科 医学
关键词 ORIENTED CLASSIFICATION HIGH VEGETATION COVERAGE Area BUILDING
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 9-16
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ORIENTED
CLASSIFICATION
HIGH
VEGETATION
COVERAGE
Area
BUILDING
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导