作者:
原文服务方: 选煤技术       
摘要:
在分析破碎机典型故障原理及其基本特征的基础上,利用小波包分析将振动信号分解到不同波段,采用能量归一化处理后形成特征向量输入bp神经网络,通过网络训练后用于实际故障识别,结果证明该方案具有较高的正确率,可有效识别和预警破碎机各类故障.
推荐文章
基于小波包和改进 BP 神经网络算法的电机故障诊断
故障诊断
小波变换
神经网络
电机
基于小波包分析和BP神经网络的中医脉象识别方法
脉象识别
BP神经网络
小波包分析
模糊神经网络在破碎机故障诊断系统中的应用
破碎机
故障诊断
模糊处理
BP神经网络
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包和bp神经网络的破碎机故障识别技术研究
来源期刊 选煤技术 学科
关键词 破碎机 故障 小波包 神经网络
年,卷(期) 2019,(6) 所属期刊栏目 自动化与智能化
研究方向 页码范围 102-105,109
页数 5页 分类号 TD451
字数 语种 中文
DOI 10.16447/j.cnki.cpt.2019.06.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡先锋 4 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (28)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
破碎机
故障
小波包
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
选煤技术
双月刊
1001-3571
13-1115/TD
大16开
1973-01-01
chi
出版文献量(篇)
3584
总下载数(次)
0
总被引数(次)
16138
论文1v1指导