基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的基于密度的聚类算法存在参数敏感,处理非球面数据和复杂流形数据聚类效果差的问题,提出一种新的基于密度峰值的聚类算法.该算法首先根据自然最近邻居的概念确定数据点的局部密度,然后根据密度峰局部密度最高并且被稀疏区域分割来确定聚类中心,最后提出一种新的类簇间相似度概念来解决复杂流形问题.在实验中,该算法在合成和实际数据集中的表现比DPC(clustering by fast search and find of density peaks)、DBSCAN(density-based spatial clustering of applications with noise)和K-means算法要好,并且在非球面数据和复杂流形数据上的优越性特别大.
推荐文章
基于加权K近邻的改进密度峰值聚类算法
数据挖掘
加权K近邻
密度峰值
聚类
基于自然最近邻相似图的谱聚类
谱聚类
自然最近邻
相似图
相似度矩阵
快速搜索与发现密度峰值聚类算法的优化研究
聚类
密度峰值
近邻距离曲线
类合并
基于密度峰值优化的谱聚类算法
谱聚类
密度峰值
密度聚类
自适应
Nystr(o)m抽样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自然最近邻优化的密度峰值聚类算法*
来源期刊 计算机科学与探索 学科 工学
关键词 密度峰 自然最近邻居 局部密度 稀疏区域 类簇间相似度
年,卷(期) 2019,(4) 所属期刊栏目 理论与算法
研究方向 页码范围 711-720
页数 10页 分类号 TP301.6
字数 4623字 语种 中文
DOI 10.3778/j.issn.1673-9418.1804033
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 钱雪忠 江南大学物联网工程学院物联网技术应用教育部工程研究中心 92 741 15.0 22.0
2 金辉 江南大学物联网工程学院物联网技术应用教育部工程研究中心 2 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (9)
同被引文献  (50)
二级引证文献  (1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(6)
  • 参考文献(6)
  • 二级参考文献(0)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(9)
  • 引证文献(8)
  • 二级引证文献(1)
研究主题发展历程
节点文献
密度峰
自然最近邻居
局部密度
稀疏区域
类簇间相似度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导