基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文针对现有的谱聚类方法用于极化SAR图像分类时精度较低的问题,提出一种基于马尔科夫的判别谱聚类方法(MDSC),具有低秩和稀疏分解的特点.该方法首先恢复一个真实的低秩概率转移矩阵,将其作为标准马尔科夫谱聚类方法的输入,以减少噪声对分类结果的影响;然后在目标函数中引入判别信息,使极化SAR图像的数据信息能够得到更加充分地利用;最后采用增广拉格朗日乘子法来解决低秩和概率单纯形约束下的目标函数优化问题.在荷兰小农田、德国、西安和荷兰大农田4个不同数据集上的实验证明,该方法具有较好的准确率,且参数敏感性较低,表现出了良好的分类性能.
推荐文章
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于马尔科夫随机场的木材缺陷图像分割算法
木材缺陷
马尔科夫随机场
Otsu分割
MRF多通道图像分割
基于稀疏自编码器和边缘保持的Wishart马尔科夫随机场的极化SAR图像分类
稀疏自编码器
极化SAR图像
Wishart距离
马尔科夫随机场
基于脑电功率谱-连续隐马尔科夫链的精神疲劳分级模型
连续隐马尔科夫模型
脑电
功率谱
精神疲劳
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于马尔科夫判别谱聚类的极化SAR图像分类方法
来源期刊 雷达学报 学科 工学
关键词 极化SAR 谱聚类 判别谱聚类 多视角谱聚类
年,卷(期) 2019,(4) 所属期刊栏目 SAR图像智能解译专题
研究方向 页码范围 425-435
页数 11页 分类号 TN958
字数 6553字 语种 中文
DOI 10.12000/JR19059
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极化SAR
谱聚类
判别谱聚类
多视角谱聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
雷达学报
双月刊
2095-283X
10-1030/TN
大16开
北京市海淀区北四环西路19号
2012
chi
出版文献量(篇)
766
总下载数(次)
3
总被引数(次)
4241
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导