为了使高校的就业指导工作更具针对性,可以有针对性地培养学生,本文收集了毕业生的相关信息及其各自的就业情况,构建了基于HMIGW特征选择和XGBoost的分类预测建模算法,并将其应用于毕业生就业预测.本文首先考虑到学生信息数据具有离散型和连续型混合的特点,提出一种适应于就业预测的基于互信息和权重的混合(Hybrid feature selection based on Mutual Information and Gain Weight,以下简称HMIGW)特征选择算法,该方法先对学生数据的特征做相关性估值,然后采用前向特征添加后向递归删除策略进行特征选择,最后基于选择后的最优特征子集数据用XGBoost预测模型进行训练与结果预测.通过对比不同算法的结果,本文采用的预测方法在准确率和时间等评价指标上有较好的表现,对于毕业生培养就业指导具有积极作用.