基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
云检测作为遥感影像数据处理中的重要组成部分,在气候分析等各个方面起到了重要的作用.在云检测研究中,无论是应用广泛的阈值法或是基于模式识别的方法,以及在二者基础上的综合分析法.这些方法大多都依赖于单一类型的遥感数据来源,且在特征提取方面十分依赖先验知识,受主观影响较大.本文利用两种不同类型"风云"系列气象遥感卫星的可见光红外扫描辐射计(Visible and Infrared Radiometer,VIRR)以及多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,AGRI)数据,以全卷积神经网络为基础进行云检测,利用其自动提取深层隐含特征等特性,极大保留特征信息.最后结合全连接条件随机场模型进行云系边缘优化.实验结果表明,该算法分别应用于以上两种不同类型遥感影像数据,都较好地完成了云像元和非云像元的分离.
推荐文章
基于全卷积神经网络的遥感图像海面目标检测
YOLOv3
全卷积神经网络
遥感图像
目标检测
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于密集连接空洞卷积神经网络的青藏地区云雪图像分类
云雪图像识别
特征提取
跨层连接
空洞卷积
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于全卷积神经网络的卫星遥感图像云检测方法
来源期刊 红外技术 学科 工学
关键词 云检测 遥感影像 风云卫星 全卷积神经网络
年,卷(期) 2019,(7) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 607-615
页数 9页 分类号 TP389.1
字数 6305字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高军 上海海事大学信息工程学院 9 47 4.0 6.0
2 荆益国 上海海事大学信息工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (114)
共引文献  (112)
参考文献  (29)
节点文献
引证文献  (4)
同被引文献  (39)
二级引证文献  (3)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(4)
  • 参考文献(1)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(10)
  • 参考文献(1)
  • 二级参考文献(9)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(12)
  • 参考文献(1)
  • 二级参考文献(11)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(11)
  • 参考文献(4)
  • 二级参考文献(7)
2006(13)
  • 参考文献(0)
  • 二级参考文献(13)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2008(4)
  • 参考文献(3)
  • 二级参考文献(1)
2009(8)
  • 参考文献(4)
  • 二级参考文献(4)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(5)
  • 引证文献(2)
  • 二级引证文献(3)
研究主题发展历程
节点文献
云检测
遥感影像
风云卫星
全卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
论文1v1指导