基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Under the background of the Judicial Reform of China, big data of judicial cases are widely used to solve the problem of judicial research. Similarity analysis of judicial cases is the basis of wisdom judicature. In view of the necessity of getting rid of the ineffective information and extracting useful rules and conditions from the descriptive document, the analysis of Chinese judicial cases with a certain format is a big challenge. Hence, we propose a method that focuses on producing recommendations that are based on the content of judicial cases. Considering the particularity of Chinese language, we use “jieba” text segmentation to preprocess the cases. In view of the lack of labels of user interest and behavior, the proposed method considers the content information via adopting TF-IDF combined with LDA topic model, as opposed to the traditional methods such as CF (Collaborative Filtering Recommendations). Users are recommended to compute cosine similarity of cases in the same topic. In the experiments, we evaluate the performance of the proposed model on a given dataset of nearly 200,000 judicial cases. The experimental result reveals when the number of topics is around 80, the proposed method gets the best performance.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Content-Based Recommendation Framework for Judicial Cases
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 RECOMMENDATION CONTENT-BASED LDA COSINE SIMILARITY
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 86-88
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RECOMMENDATION
CONTENT-BASED
LDA
COSINE
SIMILARITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导