摘要:
[目的]单木生长受气候、林分等多种因子影响,需要利用适当的方法厘清气候以及林分中影响林木生长的主导因子.随机森林等机器学习方法提供了一种新的途径,需要检验利用随机森林算法分析气候和林分因子对林木生长影响的可靠性,为森林生长收获预估提供新的方法.[方法]以吉林省汪清林业局20块落叶松-云冷杉混交林固定样地25年(1986—2010年)间连续调查数据作为研究材料,候选气候和林分因子52个,利用随机森林算法建立了包含气候和林分的单木胸径生长模型,分析气候和林分因子对单木胸径年平均生长量的影响:基于52个超参数组合(决策树数目ntree=1000、决策树每个结点随机选择的预测变量个数mtry={1,2,···,52})构建了52个随机森林模型,利用10折交叉验证法分别训练和评估52个随机森林模型;基于完整数据集,利用最优随机森林模型分析自变量对单木胸径年平均生长量影响的相对重要性以及偏依赖关系.[结果]ntree=1000、mtry=12所对应的模型是52个模型中具有最佳泛化能力的模型,该模型具有最大的交叉验证决定系数R2cv(R2cv=0.54),以及最小的交叉验证均方根误差RMSEcv、交叉验证平均绝对偏差MAEcv和交叉验证相对均方根误差rRMSEcv(RMSEcv=0.14 cm、MAEcv=0.10 cm、rRMSEcv=50%).单木胸径年平均生长量受林分因子的影响极大,相对重要性超过80.00%.8个林分因子中,大于对象木的林木断面积之和BAL对单木胸径年平均生长量影响最大,林分每公顷株数N对单木胸径年平均生长量影响最小,其他因子对单木胸径年平均生长量影响介于两者之间;单木胸径年平均生长量随BAL、林分每公顷断面积BA、N以及林分断面积平均胸径Dg的增加而下降,随对象木胸径与林分断面积平均胸径之比RD、林木期初胸径D0以及对象木胸径与林分中最大林木胸径之比DDM的增加而增加.单木胸径年平均生长量受气候因子的影响较小,相对重要性低于20.00%.44个气候因子对单木胸径年平均生长量的影响均较小(相对重要性均<1%),其中,生长季平均降水量(4—9月)与年均降水量之比Pratio、年总太阳辐射时长Asr、生长季平均降水量(4—9月)与生长季相对湿度(4—9月)之比Gspgsrh以及生长季太阳辐射时长(4—9月)Gssr是前4个相对重要的变量.[结论]随机森林模型能够较好地解析各变量与单木胸径年平均生长量之间复杂的关系,单木胸径年平均生长量受林分因子的影响极大,而受气候因子的影响较小.总体而言,在局部尺度上,林分因子是影响单木胸径生长的主导因子,而气候因子对单木胸径生长的解释能力有限.随机森林模型具有一定的泛化能力和统计可靠性,产生的变量重要性和偏依赖图具有合理的林学意义.