基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的车厢号识别系统常存在着效率不高、改造困难、维护复杂等缺陷.利用深度卷积神经网络设计货物列车车厢号自动识别系统.通过搭建深度卷积框架LPCNN,缩减模型结构,采取交叉并行的数据传输方式,对图片集进行训练测试,识别的最终结果表明该系统与现有的Alex-Net模型对比,参数的数量仅需其1/50,且识别结果精度和准确率得到有效提升.
推荐文章
基于卷积神经网络LeNet-5的货运列车车号识别研究
列车车号
车号识别
卷积神经网络
LeNet-5
基于卷积神经网络的手写体数字识别系统
卷积神经网络
手写体数字
Linux
QT
基于并行卷积核交叉模块的卷积神经网络设计
卷积神经网络
网络改进
卷积核
图像分类
特征提取
结果分析
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于交叉并行卷积神经网络的货物列车车厢号识别系统
来源期刊 制造业自动化 学科 工学
关键词 交叉并行卷积神经网络 车厢号 定位识别
年,卷(期) 2019,(3) 所属期刊栏目 检测与监控
研究方向 页码范围 4-6,19
页数 4页 分类号 TP391.4
字数 2832字 语种 中文
DOI 10.3969/j.issn.1009-0134.2019.03.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁军航 青岛大学自动化学院 17 24 3.0 4.0
2 许华胜 青岛大学自动化学院 3 2 1.0 1.0
3 王豪男 青岛大学自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (329)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(2)
  • 参考文献(0)
  • 二级参考文献(2)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(1)
  • 二级参考文献(5)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交叉并行卷积神经网络
车厢号
定位识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
制造业自动化
月刊
1009-0134
11-4389/TP
大16开
北京德胜门外教场口1号
2-324
1979
chi
出版文献量(篇)
12053
总下载数(次)
12
相关基金
山东省自然科学基金
英文译名:Natural Science Foundation of Shandong Province
官方网址:http://kyc.wfu.edu.cn/second/wnfw/shandongshengzirankexuejijin.htm
项目类型:重点项目
学科类型:
论文1v1指导