基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在α稳定分布噪声背景下,核最小平均P范数算法(KLMP)的性能显著优于核最小均方算法(KLMS),但KLMP算法的计算量和存储容量都随迭代次数线性增加,不便实际应用.针对此问题,该文应用迁移学习理论,将基于样本实例获得的总滤波器划分为具有局部紧支撑结构的子滤波器之和,每个子滤波器的训练分别受不同的输入驱动,提出了最近实例质心估计核最小平均P范数算法(NICE-KLMP);为进一步减小存储容量,将在线矢量量化应用到该算法中,提出最近实例质心估计量化核最小平均P范数算法(NICE-QKLMP).α稳定分布噪声背景下的Mackey-Glass时间序列预测的仿真结果表明,NICE-KLMP和NICE-QKLMP算法的复杂度显著低于KLMP算法,抗脉冲噪声性能显著强于NICE-KLMS算法,与KLMP算法相当.
推荐文章
α稳定分布噪声下的核最小平均P范数算法
α稳定分布
最小平均P范数
核方法
再生核希尔伯特空间
Mackey-Glass时间序列
α稳定分布噪声下的核最小平均P范数算法
α稳定分布
最小平均P范数
核方法
再生核希尔伯特空间
Mackey-Glass时间序列
一种自适应全局最小平均p-范数算法
自适应滤波
系统辨识
α-稳定噪声
lp距离
TLMP算法
脉冲噪声环境的一种递归全局最小平均P-范数算法
α-稳定噪声
FIR自适应滤波
递归全局最小平均P-范数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用迁移学习的量化核最小平均P范数算法
来源期刊 信号处理 学科 工学
关键词 α稳定分布 迁移学习 最近实例质心估计核最小平均P范数 在线矢量量化 Mackey-Glass时间序列
年,卷(期) 2019,(8) 所属期刊栏目 算法研究
研究方向 页码范围 1366-1375
页数 10页 分类号 TN911
字数 7155字 语种 中文
DOI 10.16798/j.issn.1003-0530.2019.08.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵知劲 杭州电子科技大学通信工程学院 200 1531 19.0 29.0
5 陈思佳 杭州电子科技大学通信工程学院 3 0 0.0 0.0
6 张笑菲 杭州电子科技大学通信工程学院 5 15 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (1)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
α稳定分布
迁移学习
最近实例质心估计核最小平均P范数
在线矢量量化
Mackey-Glass时间序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
论文1v1指导