基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
使用主成分分析(PCA)和随机森林(RF)组合模型对高速公路隧道交通事故持续时间进行预测.主成分分析用来提高随机森林模型的精度与效率.此外,通过调节2个模型参数,包括决策树数目和最大树深度来提高模型精度和避免模型过拟合.参数优化的结果表明,建模时决策树数目取150、最大树深度取10可降低模型的泛化误差.用以建模的数据包括了山西省的所有高速公路隧道自2012—2017年内的2115起事故数据.每起事故数据包括16个变量,包括隧道类型,事故发生位置类型,事故类型等.结果表明,PCA-RF组合模型的平均绝对误差为12.80 min,误差20 min以内的准确率为89.15%,取得了良好的预测效果.并且,PCA-RF组合模型的精度高于RF模型,说明PCA-RF组合模型能够提高事故持续时间预测的精度.且PCA能够降低数据维度,提高算法的效率.与人工神经网络模型的结果表明,PCA-RF组合模型预测结果精度高且其模型更简单、效率更高.
推荐文章
基于组合模型的交通事故严重程度预测方法
交通安全
交通事故严重程度
XGBoost
卷积神经网络
诱因分析
基于IOWA算子的水上交通事故组合预测模型
事故预测
灰色模型
支持向量机
IOWA算子
基于改进FP算法的隧道交通事故关联分析
数据挖掘
关联规则
WFP?Growth算法
权重
公路隧道
交通事故
交通事故的灰色预测
交通事故
灰色系统理论
预测
MATLAB语言
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA-RF组合模型的隧道交通事故持续时间预测
来源期刊 交通信息与安全 学科 交通运输
关键词 交通安全 持续时间 预测 主成分分析 随机森林 组合模型
年,卷(期) 2019,(5) 所属期刊栏目 交通安全
研究方向 页码范围 26-32
页数 7页 分类号 U491.31
字数 5820字 语种 中文
DOI 10.3963/j.issn.1674-4861.2019.05.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨顺新 东南大学交通学院 19 60 4.0 7.0
2 何珂 东南大学交通学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (35)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(3)
  • 参考文献(1)
  • 二级参考文献(2)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通安全
持续时间
预测
主成分分析
随机森林
组合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
总被引数(次)
29572
论文1v1指导