基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Existing interference protection systems lack automatic evaluation methods to provide scientific, objective and accurate assessment results. To address this issue, this paper develops a layout scheme by geometrically modeling the actual scene, so that the hand-held full-band spectrum analyzer would be able to collect signal field strength values for indoor complex scenes. An improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression was proposed to predict the signal field strengths for the whole plane before and after being shield. Then the highest accuracy set of data could be picked out by comparison. The experimental results show that the improved prediction algorithm based on the K-nearest neighbor non-parametric kernel regression can scientifically and objectively predict the indoor complex scenes’ signal strength and evaluate the interference protection with high accuracy.
推荐文章
基于K-Nearest Neighbor分类算法的异常检测模型
异常检测
算法
系统调用
特权进程
网络安全
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
基于MapReduce改进K-NN的大数据分类算法研究
大数据
MapReduce
k-近邻算法
临界区域
主成分分析
距离加权
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Wireless Communication Signal Strength Prediction Method Based on the K-nearest Neighbor Algorithm
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 INTERFERENCE protection K-nearest NEIGHBOR algorithm NON-PARAMETRIC KERNEL regression SIGNAL field STRENGTH
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 238-240
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INTERFERENCE
protection
K-nearest
NEIGHBOR
algorithm
NON-PARAMETRIC
KERNEL
regression
SIGNAL
field
STRENGTH
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导