原文服务方: 航空计算技术       
摘要:
航班延误受到多种因素的交叉影响,导致航班延误数据分布不规律,难以从传统统计学的角度准确预测航班延误时间,因此以减少数据过拟合为目标,利用随机森林特征选择模型筛选21个重要特征,引入正则化L1、L2范数,建立弹性神经网络预测模型,对航班落地延误时间进行预测.预测结果为:±3 min容差内的准确率达到83.954%,±5 min容差内的准确率达到94.431%,结果表明该模型能够提高航班延误预测的准确率.
推荐文章
基于BP神经网络的机场离港延误等级预测
机场离港延误
时序因素
延误等级
BP神经网络
基于深度学习的航班起降延误预测方法
延误传播
延误预测
深度学习
人工神经网络
基于Bi-IndRNN和PSO的航班延误预测
航班延误预测
独立循环神经网络
双向循环神经网络
粒子群算法
区域管制空域航班延误实时预测模型
航班延误
平均延误时间
区域管制空域
实时预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于弹性神经网络的航班延误时间预测
来源期刊 航空计算技术 学科
关键词 航班延误预测 随机森林 弹性神经网络 特征选择
年,卷(期) 2019,(5) 所属期刊栏目 计算方法
研究方向 页码范围 12-16
页数 5页 分类号 V355
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢朝阳 南京航空航天大学民航学院 17 63 4.0 7.0
2 周洁敏 南京航空航天大学民航学院 77 516 10.0 20.0
3 周凯 南京航空航天大学民航学院 5 3 1.0 1.0
4 戴美泽 南京航空航天大学民航学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (28)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
航班延误预测
随机森林
弹性神经网络
特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空计算技术
双月刊
1671-654X
61-1276/TP
大16开
西安市太白北路156号
1971-01-01
中文
出版文献量(篇)
3899
总下载数(次)
0
论文1v1指导