原文服务方: 现代电子技术       
摘要:
针对交通标识分类识别过程中因样本类别之间的不平衡常使分类器性能减弱且实时性较差的问题,提出一种基于多特征融合的交通标识实时分类识别方法.首先,选取具有较强鲁棒性的HSV颜色空间对标识图像进行阈值分割处理,分割出交通标识所在的感兴趣区域;其次,提出一种HOG-MBLBP特征融合算法,通过支持向量机分类算法,实现交通标识的精确分类识别;最后,针对视频图像中交通标识识别实时性问题,采用自适应卡尔曼滤波算法进行交通标识的跟踪识别.实验结果表明该方法具有97.88%的分类准确率且具有较好的实时性.
推荐文章
基于多特征融合的红外目标识别算法
红外图像
多特征融合
目标识别
颜色特征
边缘特征
基于多特征决策融合的SAR飞机识别
SAR图像
目标识别
几何特征
PCA特征
Hu不变矩
基于等级的决策融合
基于蚁群优化与独立特征集的遥感图像实时分类算法
人工智能
特征提取
遥感图像
时间效率
蚁群优化算法
极限学习机
基于多特征和多分类器融合的语种识别
语种识别
多分类器
决策融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征融合的交通标识实时分类与识别
来源期刊 现代电子技术 学科
关键词 交通标识 HSV颜色分割 特征融合 支持向量机 卡尔曼滤波 跟踪识别
年,卷(期) 2019,(11) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 50-53,58
页数 5页 分类号 TN911.73-34
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.11.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李为相 南京工业大学电气工程与控制科学学院 33 294 8.0 16.0
2 揭伟 南京工业大学电气工程与控制科学学院 2 4 1.0 2.0
3 李为 南京工业大学电气工程与控制科学学院 5 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (50)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(12)
  • 参考文献(0)
  • 二级参考文献(12)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(6)
  • 参考文献(4)
  • 二级参考文献(2)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标识
HSV颜色分割
特征融合
支持向量机
卡尔曼滤波
跟踪识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导