We introduce a novel model for the origin of the observable universe in which a flat universe with a positive vacuum energy is proceeded by a flat universe with a negative vacuum energy. A negative vacuum energy is consistent with a supersymmetric ground state similar to that predicted by superstring theories. A positive vacuum energy could emerge as a result of the gravitational collapse of the negative vacuum energy universe when the matter temperature reaches a characteristic value where supersymmetry is strongly broken. In principle this allows one to derive all the features of our expanding universe from a single parameter: the magnitude of the pre-big bang negative vacuum energy density. In this paper, a simple model for the big bang is introduced which allows us to use the present day entropy density, and temperature fluctuations of the CMB, together with the present day density of dark matter, to predict the magnitude of the negative vacuum energy. This model for the big bang also makes a dramatic prediction: dark matter consists of compact objects with masses on the order of 104 solar masses. Remarkably this is consistent with numerical simulations for how the primordial fluctuations in the density of dark matter give rise to the observed inhomogeneous distribution of matter in our universe. Our model for the big bang also allows for the production of some compact objects with masses greater than 104 solar masses which are consistent with observations of massive compact objects at the center of the earliest galaxies.