基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The traditional deep learning model has problems that the longdistance dependent information cannot be learned, and the correlation between the input and output of the model is not considered. And the information processing on the sentence set is still insufficient. Aiming at the above problems, a relation extraction method combining bidirectional GRU network and multiattention mechanism is proposed. The word-level attention mechanism was used to extract the word-level features from the sentence, and the sentence-level attention mechanism was used to focus on the characteristics of sentence sets. The experimental verification in the NYT dataset was conducted. The experimental results show that the proposed method can effectively improve the F1 value of the relationship extraction.
推荐文章
The influence of urbanization on karst rivers based on nutrient concentration and nitrate dual isoto
Urbanization
Urban river
Nitrate isotopes
Southwestern China
Chengguan River
Mechanism of accelerated dissolution of mineral crystals by cavitation erosion
Cavitation erosion
Mineral dissolution
Plastic deformation
Stepwave
Gibbs free energy
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
基于BiLSTM-Attention唇语识别的研究
唇语识别
双向长短时记忆网络
注意力机制
深度学习
时序编码
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Relation Extraction Based on Dual Attention Mechanism
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 BIDIRECTIONAL GRU Multi-attention RELATION extraction
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 354-356
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BIDIRECTIONAL
GRU
Multi-attention
RELATION
extraction
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导