基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 由于化验单内容可以真实地记录患者健康状态,因此将纸质的化验单转为医疗电子档案进行存储在进行保险理赔、转院、远程会诊、建立健康档案时都具有重要作用.但目前在临床上尚缺乏能识别化验单内容,把化验单直接转成医疗电子档案的工具,为此本文设计了一套完整的自动化医学化验单内容的光学字符识别(optical character recognition,OCR)方法.方法 首先对化验单图像进行预处理,利用大津法对化验单图像进行二值化、用霍夫变换对图像进行抗扭斜和特征提取,然后使用Tesseract的集束搜索算法和K邻近算法对化验单内容进行识别,对字库进行训练,利用医学词典文件与模糊字文件来对识别内容进行纠错,并以此建立医学化验单OCR引擎.最后利用从上海某社区医院收集的302条化验单数据对OCR引擎的准确率进行了评估.结果 经评估验证,本文方法的识别准确率为92.72%,可基本满足临床需求.结论 基于Tesseract建立的医学化验单OCR引擎可以免去手动输入化验单数据的麻烦,医生仅需拍照上传化验单照片,即可将化验单中的内容转成结构化医疗电子档案,极大提高了医生的工作效率,有助于数据的进一步利用.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Tesseract的医学化验单内容识别技术
来源期刊 北京生物医学工程 学科 医学
关键词 化验单 光学字符识别 图像处理 错误校正
年,卷(期) 2019,(3) 所属期刊栏目 论著
研究方向 页码范围 283-289
页数 7页 分类号 R318.08|TP391.5
字数 4654字 语种 中文
DOI 10.3969/j.issn.1002-3208.2019.03.011.
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹梓名 上海理工大学医疗器械与食品学院 10 19 3.0 4.0
2 孙大运 上海理工大学医疗器械与食品学院 3 3 1.0 1.0
3 张淙悦 上海理工大学医疗器械与食品学院 2 3 1.0 1.0
4 戴维 上海理工大学医疗器械与食品学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (44)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(2)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
化验单
光学字符识别
图像处理
错误校正
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京生物医学工程
双月刊
1002-3208
11-2261/R
16开
北京安定门外安贞医院
1981
chi
出版文献量(篇)
2829
总下载数(次)
13
总被引数(次)
15960
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导