基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于评分搜索的贝叶斯网络结构学习算法通常需要调参,导致计算量增大且不当的参数易使算法陷入局部最优.针对这一问题,将无需调参的Jaya算法应用于贝叶斯网络结构学习.在Jaya算法的框架下,结合遗传算法的交叉变异思想重新设计了个体更新策略,使Jaya算法能够应用于结构学习这一离散优化问题,并结合马尔科夫链的相关理论讨论了所提算法的敛散性.实验结果表明,该算法能有效应用于贝叶斯网络结构学习.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
贝叶斯网络结构学习的发展与展望
概率贝叶斯网络
因果贝叶斯网络
贝叶斯网络结构学习
因果数据挖掘
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Jaya的贝叶斯网络结构学习算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 贝叶斯网络 结构学习 Jaya算法 马尔科夫链
年,卷(期) 2019,(19) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 173-177,184
页数 6页 分类号 TP393
字数 5631字 语种 中文
DOI 10.3778/j.issn.1002-8331.1903-0069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张鹏 空军工程大学航空工程学院 83 557 12.0 18.0
2 谢川 空军工程大学航空工程学院 33 231 10.0 14.0
3 严智 空军工程大学研究生院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (4)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
Jaya算法
马尔科夫链
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导