基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确地诊断出列控车载设备的故障类型是保障列车安全运行的基础.针对车载设备故障诊断问题,根据北京动车段300 T车载日志数据的特点,基于数据挖掘方法并结合现场技术人员的经验知识,构建车载设备的故障特征词库;在此基础上,改进了Labeled-LDA(Latent Dirichlet Allocation)模型用于提取日志数据的语义特征.采用基于粒子群优化的支持向量机算法PSO-SVM对日志文本的故障进行分类,以降低故障样本数据分布不均衡对分类精度的影响,并与传统的支持向量机算法SVM,K最近邻算法KNN进行对比分析.实验结果表明,KNN、SVM、PSO-SVM三种算法的故障文本数据一级故障诊断准确率依次为79.4%,81.8% 和90.9%,二级故障诊断准确率依次为74.6%,78.1% 和81.3%,验证了PSO-SVM算法在车载设备故障诊断方面的有效性.该研究成果对列控车载设备日常维护具有一定的指导意义.
推荐文章
齿轮裂纹特征提取和故障诊断方法研究
齿轮
频带能量
特征提取
故障诊断
欧氏距离技术
基于小波分析的最优故障特征提取研究
故障特征提取
小波分析
四运放电路
克隆选择算法
模拟电路
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Labeled-LDA的列控车载设备故障特征提取与诊断方法研究
来源期刊 铁道学报 学科 交通运输
关键词 车载设备 Labeled-LDA 粒子群优化算法 支持向量机 故障诊断
年,卷(期) 2019,(8) 所属期刊栏目 铁道通信信号、信息化
研究方向 页码范围 56-66
页数 11页 分类号 U284.48
字数 7557字 语种 中文
DOI 10.3969/j.issn.1001-8360.2019.08.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王剑 北京交通大学电子信息工程学院 102 885 17.0 24.0
5 上官伟 北京交通大学电子信息工程学院 58 408 12.0 17.0
9 袁亚辉 北京交通大学电子信息工程学院 1 0 0.0 0.0
10 胡福威 北京交通大学电子信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (111)
共引文献  (334)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(9)
  • 参考文献(0)
  • 二级参考文献(9)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(10)
  • 参考文献(3)
  • 二级参考文献(7)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车载设备
Labeled-LDA
粒子群优化算法
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道学报
月刊
1001-8360
11-2104/U
大16开
北京复兴路10号
2-308
1979
chi
出版文献量(篇)
4684
总下载数(次)
8
总被引数(次)
85544
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导