摘要:
树木年轮学的研究需要统计树龄和测量轮宽,由此推算环境变换和树木生长信息,因此准确提取年轮特征信息至关重要.精准识别出年轮图像中的早材、晚材和树皮是实现自动化测量年轮参数的首要工作.树木年轮的生长过程中存在年轮的早材和晚材间边界过渡模糊、节疤和伪年轮等现象,且年轮圆盘在砍伐和采集过程中表面会存在毛刺和噪声点,使用传统的图像分割算法难以得到理想的效果.本文结合深度神经网络的特点,针对年轮图像的分割问题,构建了基于U-Net卷积神经网络的年轮图像语义分割模型.首先,对采集的100张年轮圆盘图像进行标注,并通过旋转、透视和图像变形等方式做数据增强,生成20000张数据集,随机选择其中16000张作为训练数据集,4000张作为测试数据集.其次,根据图像数据集的特征,利用Tensorflow深度学习框架,设计构建基于U-Net卷积神经网络的年轮圆盘图像分割网络.然后,将训练样本输送进网络,设置优化训练参数,对年轮图像分割网络进行迭代训练,直至评价指标和损失函数不再变化.最后,用训练好的模型对测试集样本进行分割,并进行分割指标评估.结果 表明:该算法可有效避免毛刺、锯痕和节疤等因素的影响,完整地分割出年轮的晚材和树皮区域,在4000张测试数据集上分割的平均准确率达到96.51%,平均区域重合度达到82.30%.与传统图像处理算法相比,本文所采用的基于U-Net卷积神经网络的年轮图像分割算法,能够达到更好的分割效果,同时具有更强的泛化能力和鲁棒性.