针对生产过程对环境的巨大影响,提出一种基于贝叶斯统计的混合分布估计算法(Hybrid Bayesian-Statistical-Based Estimation of Distribution Algorithm,HBEDA)求解带交货期的多目标可重入作业车间绿色调度问题(Multi-objective Re-entrant Job Shop Green Scheduling Problem with Due Date,MRJSGSP_DD),实现对最大延迟(Maximum Tardiness,MT)和总能量消耗(Total Energy Consumption,TEC)的最小化.首先,在算法初始化阶段,产生一组随机种群,保证种群的随机性和多样性,并构造出非支配解集.其次,引入基于贝叶斯统计的混合分布估计算法构造概率模型,该模型能够学习到工件之间序的关系,增强了算法的全局搜索能力.最后,利用该问题的特性,设计了一种增强型的局部搜索的方法.仿真实验和算法对比验证了该算法的有效性.