基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确而迅速地拾取大量地震事件的P波初至,将深度学习方法引入微地震P波初至到时拾取研究中,对卷积神经网络的结构进行改造,以便适应地震波形数据的特点和P波初至拾取的要求.该算法只需要输入10 s窗口的三分量地震波形数据,就可以自动地判定P波初至时刻,无需扫描连续波形,运算时间远远小于长短窗、模板匹配等传统方法.使用该算法训练汶川地震主震后2008年7—8月7467条人工拾取的余震P波初至到时,将得到的模型对测试集中1867条数据的计算结果与人工拾取结果对比,误差小于0.5 s者占比达到98.9%.在低信噪比条件下,该方法仍能保持较好的拾取能力.
推荐文章
基于UNet++的地震P波初至拾取研究
地震
深度学习
UNet++
P波初至拾取
P波初至到时自动拾取技术研究
粘滞性单自由度振动器
阻尼能量
P波初至到时
AIC算法
SDOF picker算法
地震记录的P波自动捡拾
自动捡拾
P波
地震记录
姚安地震余震序列研究
震源参数
余震序列
姚安地震
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 人工智能在拾取地震P波初至中的应用 ——以汶川地震余震序列为例
来源期刊 北京大学学报(自然科学版) 学科
关键词 人工智能 机器学习 深度学习 小波变换 初至拾取
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 451-460
页数 10页 分类号
字数 9310字 语种 中文
DOI 10.13209/j.0479-8023.2018.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 盖增喜 北京大学地球与空间科学学院 20 62 3.0 7.0
2 蔡振宇 北京大学地球与空间科学学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (276)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (13)
二级引证文献  (0)
1940(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(4)
  • 参考文献(3)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能
机器学习
深度学习
小波变换
初至拾取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京大学学报(自然科学版)
双月刊
0479-8023
11-2442/N
16开
北京海淀北京大学校内
2-89
1955
chi
出版文献量(篇)
3152
总下载数(次)
8
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导